The selective recruitment of mRNA to the ER and an increase in initiation are important for glucose-stimulated proinsulin synthesis in pancreatic beta-cells.
نویسندگان
چکیده
Glucose acutely stimulates proinsulin synthesis in pancreatic beta-cells through a poorly understood post-transcriptional mechanism. In the present study, we demonstrate in pancreatic beta-cells that glucose stimulates the recruitment of ribosome-associated proinsulin mRNA, located in the cytoplasm, to the ER (endoplasmic reticulum), the site of proinsulin synthesis, and that this plays an important role in glucose-stimulated proinsulin synthesis. Interestingly, glucose has greater stimulatory effect on the recruitment of proinsulin mRNA to the ER compared with other mRNAs encoding secretory proteins. This, as far as we are aware, is the first example whereby mRNAs encoding secretory proteins are selectively recruited to the ER and provides a novel regulatory mechanism for secretory protein synthesis. Contrary to previous reports, and importantly in understanding the mechanism by which glucose stimulates proinsulin synthesis, we demonstrate that there is no large pool of 'free' proinsulin mRNA in the cytoplasm and that glucose does not increase the rate of de novo initiation on the proinsulin mRNA. However, we show that glucose does stimulate the rate of ribosome recruitment on to ribosome-associated proinsulin mRNA. In conclusion, our results provide evidence that the selective recruitment of proinsulin mRNA to the ER, together with increases in the rate of initiation are important mediators of glucose-stimulated proinsulin synthesis in pancreatic beta-cells.
منابع مشابه
Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels in islet beta-cells but not regulated via a positive feedback of secreted insulin.
Proinsulin biosynthesis is regulated in response to nutrients, most notably glucose. In the short term (</=2h) this is due to increases in the translation of pre-existing mRNA. However, prolonging glucose stimulation (24 h) also increases preproinsulin mRNA levels. It has been proposed that secreted insulin from the pancreatic beta-cell regulates its own synthesis through a positive autocrine f...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملThe Effect of 12 Weeks Aerobic Training on the Mafa Gene Expression of Pancreas in the Male Wistar Rats Type 2 Diabetes
Objective: MafA is one of the major factors in the family of MafA transcription factors. In pancreatic beta cells, MafA plays an important role in regulating the expression of glucose-dependent Insulin gene. On the other hand, Lipotocyticleads to negative expression of MafA expression when exposed to inflammatory cytokines. These statements in general emphasize the role that MafA plays as a key...
متن کاملاثر کادمیوم بر روی مارکرهای استرس اکسیداتیو، محتوا و ترشح انسولین در جزایر لانگرهانس جدا شده از پانکراس موش صحرایی
Background and purpose: Cadmium is a highly toxic industrial and environmental pollutant that is known as an important risk factor for developing diabetes. Oxidative stress is reported to be highly associated with diabetes and its complications. The aim of this study was to evaluate the effects of cadmium on oxidative stress response and secretory function of islets of Langerhans from rat pancr...
متن کاملJagn1 Is Induced in Response to ER Stress and Regulates Proinsulin Biosynthesis
The Jagn1 protein was indentified in a SILAC proteomic screen of proteins that are increased in insulinoma cells expressing a folding-deficient proinsulin. Jagn1 mRNA was detected in primary rodent islets and in insulinoma cell lines and the levels were increased in response to ER stress. The function of Jagn1 was assessed in insulinoma cells by both knock-down and overexpression approaches. Kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 391 Pt 2 شماره
صفحات -
تاریخ انتشار 2005